Towards Meaningful High-Dimensional Nearest Neighbor Search by Human-Computer Interaction
نویسنده
چکیده
Nearest Neighbor search is an important and widely used problem in a number of important application domains. In many of these domains, the dimensionality of the data representation is often very high. Recent theoretical results have shown that the concept of proximity or nearest neighbors may not be very meaningful for the high dimensional case. Therefore, it is often a complex problem to find good quality nearest neighbors in such data sets. Furthermore, it is also difficult to judge the value and relevance of the returned results. In fact, it is hard for any fully automated system to satisfy a user about the quality of the nearest neighbors found unless he is directly involved in the process. This is especially the case for high dimensional data in which the meaningfulness of the nearest neighbors found is questionable. In this paper, we address the complex problem of high dimensional nearest neighbor search from the user perspective by designing a system which uses effective cooperation between the human and the computer. The system provides the user with visual representations of carefully chosen subspaces of the data in order to repeatedly elicit his preferences about the data patterns which are most closely related to the query point. These preferences are used in order to determine and quantify the meaningfulness of the nearest neighbors. Our system is not only able to find and quantify the meaningfulness of the nearest neighbors, but is also able to diagnose situations in which the nearest neighbors found are truly not meaningful.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAdaptively Discovering Meaningful Patterns in High-Dimensional Nearest Neighbor Search
To query high-dimensional databases, similarity search (or k nearest neighbor search) is the most extensively used method. However, since each attribute of high dimensional data records only contains very small amount of information, the distance of two high-dimensional records may not always correctly reflect their similarity. So, a multi-dimensional query may have a k-nearest-neighbor set whi...
متن کاملEFFECT OF THE NEXT-NEAREST NEIGHBOR INTERACTION ON THE ORDER-DISORDER PHASE TRANSITION
In this work, one and two-dimensional lattices are studied theoretically by a statistical mechanical approach. The nearest and next-nearest neighbor interactions are both taken into account, and the approximate thermodynamic properties of the lattices are calculated. The results of our calculations show that: (1) even though the next-nearest neighbor interaction may have an insignificant ef...
متن کاملWhen Is ''Nearest Neighbor'' Meaningful?
We explore the effect of dimensionality on the “nearest neighbor” problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance to the farthest data point. To provide a practical perspective, we present empirical results on both real and syn...
متن کامل